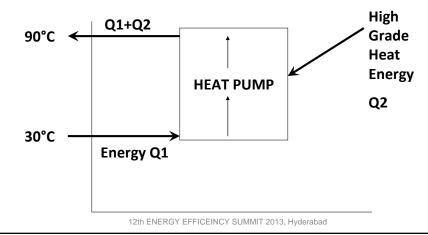
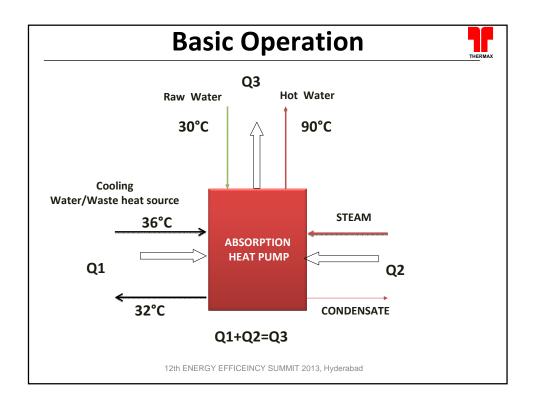


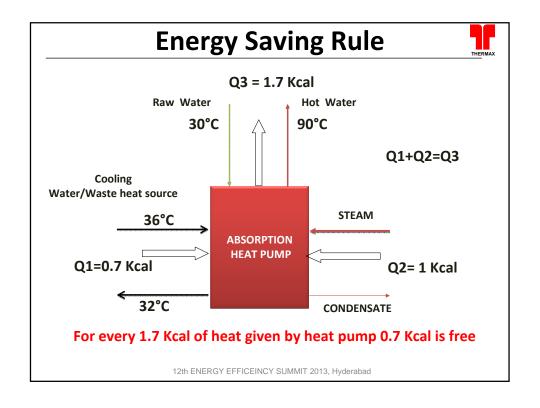
Presentation on Heat Pump

By Thermax Ltd.

12th ENERGY EFFICEINCY SUMMIT 2013, Hyderabad







Heat Pump

 It is a device which pumps heat from low temperature to high temperature using high grade energy

Applications

Processes requiring low temperature heating

can be addressed by **Heat Pump and can** reduce the Live energy consumption by 40%

12th ENERGY EFFICEINCY SUMMIT 2013, Hyderabad

Applications

• Drugs & Pharmaceuticals

- Maintaining RH in formulation Units HVAC
- Generating hot air for Drying/Coating applications
- Hot water for process in Bulk Drugs (reducing steam consumption – conventional process)
- Boiler Feed water/Raw water heating for Process Boilers/Power plants
- Waste heat can be
 - Cooling tower water
 - Effluent
 - SRP condensers (for steady waste heat input)

Formulation Application

• Installation year : 2010

• Location : Chennai

• Heating Capacity : 4 Lac Kcal/Hr

• Temperature Outlet : 56 Deg C

• Application : Humidity Control

12th ENERGY EFFICEINCY SUMMIT 2013, Hyderabad

Applications

• Chemical Process

- Feed pre-heating to reduce load on Steam
- Drying (hot air generation using 90 Deg C HW)
- Mixing hot water in feed to reduce Rxn time
- Boiler Feed water/Raw water heating for Process Boilers/Power plants
- · Waste heat can be
 - Cooling tower water
 - Effluent
 - Can be identified based on process

Applications

Process Industry

- Drying, Hot water for Pulp cooking Pulp & Paper
- Hot air Malting Process (for germination)
- Paint heating Automobile Paint booths
- Chocolate heating Confectionary Plant
- Boiler Feed water/Raw water heating for Process Boilers/Power plants
- Waste heat can be
 - Cooling tower water
 - Effluent
 - Can be identified based on process

12th ENERGY EFFICEINCY SUMMIT 2013, Hyderabad

Process Application - 1

• Installation year : 2010

• Location : Kashipur (UK)

Heating Capacity : 64 Lac Kcal/Hr

• Temperature Outlet : 80 Deg C

• Application : Hot Air Generation

Process Application - 2

• Installation year : 2011

• Location :Aurangabad

• Heating Capacity : 7.5 Lac Kcal/Hr

• Temperature Outlet : 91 Deg C

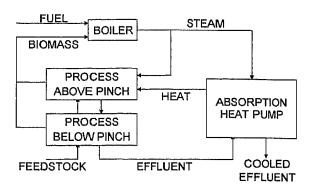
Application : Feed Heating

12th ENERGY EFFICEINCY SUMMIT 2013, Hyderabad

Process Application - 3

• Installation year : 2008

• Location : Chennai


• Heating Capacity : 20 Lac Kcal/Hr

• Temperature Outlet : 84 Deg C

• Application : Paint Heating

Typical Process Application

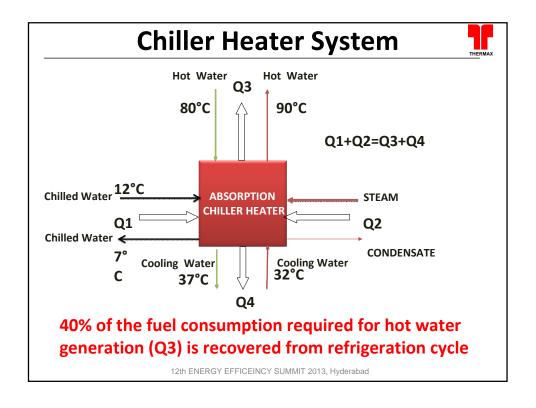
This is possible if AHP can be incorporated during design stage

12th ENERGY EFFICEINCY SUMMIT 2013, Hyderabad

Other Applications

- Refinery feed heating
- Slaughter house
- Textile processing Dyeing House
- Edible Oil
- Syrup Heating/CIP Beverage Bottling Plants

Variation of Heat Pumps


12th ENERGY EFFICEINCY SUMMIT 2013, Hyderabad

Chiller Heater – Thermax Patent 1

- Provides simultaneous chilling & heating
- 40% saving in heating energy
- For every 100 KW of cooling, 75 KW of heating can be generated
- Maximum heating capacity in simultaneous cooling and heating mode - 75-80% of the cooling load
- In the absence of cooling load, 100% heating capacity can be produced after change over to heating mode

Comparison

For Steam based operations

Sr.	Description	UOM	Compression Chiller + HW generator	Thermax Chiller Heater	
1	Chilling Capacity	TR	100	100	
2	Heating capacity	kW	260	260	
3	Energy Source for Chilling		Electricity	Steam	
4	Energy Source for Heating		Steam	Steam	
5	Steam Consumption for chilling	kg/hr	-	380	
6	Steam Consumption for Heating	Kg/hr	391	235	
7	Total Steam consumption	kg/hr	391	615	
8	Cooling Tower duty	kW	432	498	
9	Electrical Power requirement				
	Cooling tower fan	kW	3.0	3.7	
	Chiller power	kW	70	3	
	Total Power	kW	73	6.7	
10	Steam cost	Rs/kg	0.75		
11	Electrical Power rate	Rs/kWh	6		
12	Hourly Operational cost				
	Steam Cost	Rs./hr	293.25	461.25	
	Electrical power cost	Rs./hr	438	40.2	
	Total hourly operational cost	Rs./hr	731.25	501.5	
	Hourly saving	Rs./hr	229.75		

12th ENERGY EFFICEINCY SUMMIT 2013, Hyderabad

Partial Installations – Heat Pump 1

Jönköping, Sweden 4 MW

Thisted District Heating 10.5 MW

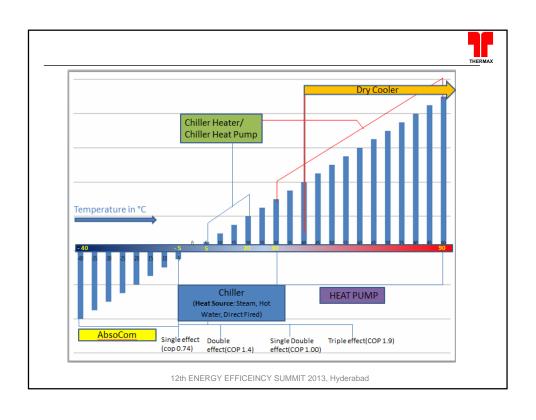
Copenhagen District Heating, Denmark 27.5 MW

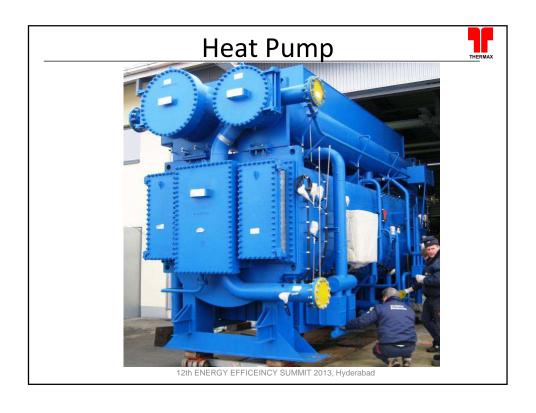
Bjerringbro, Denmark. 2.5 MW

Karlstad, Sweden 9.5 MW

Vestforbraending, Sweden 21 MW

Reference Installations- Heat Pump


Sr.No.	Customer	Country
1	Thisted District Heating	Denmark
2	Karlstad	Sweden
3	Uppsala	Sweden
4	Copenhagen District Heating	Denmark
5	ViVo	Germany
6	Jankoping	Sweden
7	Ackermann	Germany
8	vestforbiding	Sweden
9	Bjerringbro	Denmark
10	Erding	Germany
11	Halmstad	Sweden
12	Egger plant	Denmark


12th ENERGY EFFICEINCY SUMMIT 2013, Hyderabad

Reference Installations- Heat Pump

Sr.No.	Customer	Country
13	Ford India	India
14	Malt Company	India
15	Stadwerke Munchen	Germany
16	L&T Hazira	India
17	Caithness Heat & Power	UK
18	Helsingborg	Sweden
19	Skagen	Denmark
20	SEG	Europe
21	SEG	Denmark

Thank You... *Happy Saving..*

